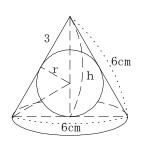
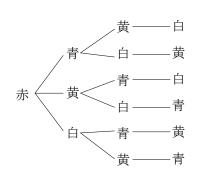
目次2へ 問題へ

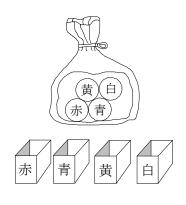
(2)
$$3(x-1) < 5x - 13$$
 $-2x < -10$ $3x - 3 < 5x - 13$ $x > \frac{-10}{-2} = 5$ 答 $x > 5$

(3)
$$(x+4)(x-4) = 5x-2$$
 $x^2-5x-14=0$ $(x+2)(x-7)=0$ $x=-2,7$


(4) 求める一次関数の式は
$$y = \frac{1}{2}x + b$$
 とかける。 この直線が点 $(-4, 1)$ を通るから
$$\frac{1}{2} \times (-4) + b = 1$$
 よって $b = 1 + 2 = 3$ したがって、一次関数の式は $y = \frac{1}{2}x + 3$
$$x = -2 \mathcal{O}$$
とき $y = \frac{1}{2} \times (-2) + 3 = 2$
$$x = 3 \mathcal{O}$$
とき $y = \frac{1}{2} \times 3 + 3 = \frac{9}{2}$ 答 $y = \frac{1}{2}x + 3$
$$2 \le y \le \frac{9}{2}$$

2 (1) ア 円すいの高さ
$$h = \sqrt{6^2 - 3^2} = \sqrt{36 - 9} = \sqrt{27} = 3\sqrt{3}$$

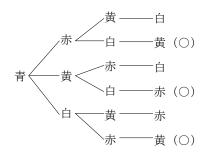

体積
$$\frac{1}{3} \times \pi \times r^2 \times h = \frac{\pi}{3} \times 3^2 \times 3\sqrt{3} = 9\pi\sqrt{3}$$


答
$$9\sqrt{3}\pi \text{cm}^2$$

イ $\frac{3}{r} = \frac{\sqrt{3}}{1}$ (または、3:r = $\sqrt{3}$:1)

$$r = \frac{3}{\sqrt{3}} = \frac{3\sqrt{3}}{3} = \sqrt{3} \qquad \qquad \text{ and } \qquad \text{$$

(2) ア 最初に取り出す玉が赤の場合、玉の入りかたは下記の6とおり



同様に、最初に取り出す玉が、青、黄、白の場合も、玉の入りかたはそれぞれ6とおり。

したがって、玉の入りかたは全部で

答 24とおり

イ 最初に青を取り出した場合、箱の色と玉の色が全てちがうのは 下記(○印)の3とおり

同様に、最初に、黄、白を取り出した場合も、箱の色と 玉の色が全てちがうのはそれぞれ3とおり。 したがって、箱の色と玉の色がすべて違うのは

$$3 \times 3 = 9$$
 とおり

よって求める確率は
$$\frac{9}{24} = \frac{3}{8}$$

答 $\frac{3}{8}$

3 (1) さんま 1 匹の仕入れ値段 x円 さんま 1 匹の定価は仕入れ値段の 20%の利益を 見込んだから x(1+0.2) = 1.2x翌日売ったさんま 1 匹の値段は定価より 50円安くするから

答 1.2x-50 円

(2) 仕入れ値段の合計から

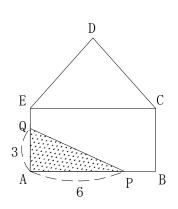
$$80x + 120y = 21600$$

翌日分の売上合計から

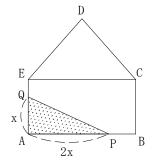
20 (1. 2x - 50) + 10 × 1. 2y ×
$$\frac{1}{2}$$
 = 3080

$$80x + 120y = 21600$$

$$20 (1. 2x - 50) + 10 × 1. 2y × $\frac{1}{2}$ = 3080$$

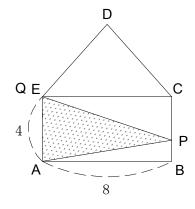

②'
$$-①'$$
 $10x = 1500x = \frac{1500}{10} = 150$ これを①' に代入して $2 \times 150 + 3y = 540$ $3y = 240$ $y = \frac{240}{3} = 80$ 答 さんま 150 円 80円

4 (1)3秒で点Pは6cm, 点Qは3cm 進むから 三角形APQの面積は


$$\frac{1}{2} \times AP \times AQ = \frac{1}{2} \times 6 \times 3 = 9$$

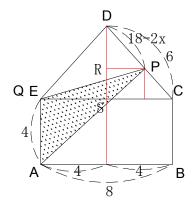
答 9cm²

(2) x秒で点Pは $2\,X\,cm$, 点Qは $X\,cm$ 進む。


ア

$$y = \frac{1}{2} \times 2x \times x = x^2$$

答
$$y = x^2$$
 $(0 \le x \le 4)$


1

$$y = \frac{1}{2} \times 8 \times 4 = 16$$

答
$$y = 16 \ (4 \le x \le 6)$$

ウ

$$\frac{PD}{PR} = \frac{CD}{CS}$$
 または、PD:PR=CD:CS
よって (18-2x):PR=6:4

$$\frac{18 - 2x}{PR} = \frac{6}{4} = \frac{3}{2}$$

$$PR = \frac{2(18 - 2x)}{3} = -\frac{4}{3}x + 12$$

$$y = \frac{1}{2} \times 4 \times (4 + PR)$$
$$= \frac{1}{2} \times 4 \times \left(-\frac{4}{3}x + 16\right)$$

$$= -\frac{8}{3}x + 32$$

答
$$y = -\frac{8}{3}x + 32$$
 $(6 \le x \le 9)$

$$x^2 = 12$$
 $x = \sqrt{12} = 2\sqrt{3}$

 $\mathbf{x} = 2\sqrt{3}$ は、範囲 $0 \le \mathbf{x} \le 4$ 内の値であるから求める解である。

イより

$$-\frac{8}{3}x + 32 = 12 \qquad -\frac{8}{3}x = -20$$

$$x = (-20) \times \left(-\frac{3}{8}\right) = \frac{15}{2}$$

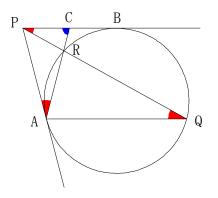
 $\mathbf{x} = \frac{15}{2}$ は、範囲 $6 \le \mathbf{x} \le 9$ 内の値であるから求める解である。

答
$$2\sqrt{3}$$
, $\frac{15}{2}$ 秒後

(1) $\triangle ACP \circ \triangle PCR$ において 5 共通の角だから

$$\angle ACP = \angle PCR \cdot \cdot \cdot \cdot \cdot (1)$$

PAは円の接線だから接弦定理により


$$\angle CAP = \angle AQR \cdot \cdot \cdot \cdot 2$$

PB//AQだから

$$\angle AQR = \angle CPR \cdot \cdot \cdot \cdot 3$$

2319

$$\angle CAP = \angle PCR \cdot \cdot \cdot \cdot 4$$

①④より2組の角がそれぞれ等しいので $\triangle A C P \hookrightarrow \triangle P C R$

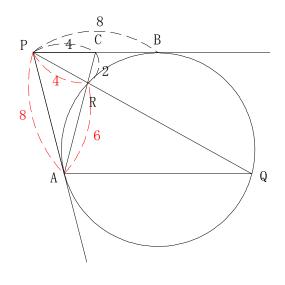
(2)

P

$$PA = PB = 8$$

 $\triangle ACP \circ \triangle PCR \sharp \emptyset$

$$\frac{PA}{PC} = \frac{PR}{CR}$$


または、PA:PC=PR:CR よって 8:4=PR:2

よって △PCRは二等辺三角形 したがって

△ACPも二等辺三角形 よって AP=AC=8

$$AR = AC - CR = 8 - 2 = 6$$

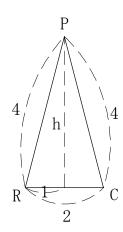
 $6\,\mathrm{cm}$ 答

1

 $\triangle PCR \circ \triangle QAR$ (2組の角がそれぞれ等しいから)

よって $\triangle PCR \circ \triangle ACP \circ \triangle QAR$ である。

以下、まず、 \triangle P C R の面積を求め、次に相似図形の面積の比は長さの比(相似比)の 2 乗に等しいことを利用して \triangle A P Q の面積を求める。


$$\frac{PC}{AP} = \frac{4}{6} = \frac{2}{3}$$
 $\frac{CR}{AR} = \frac{2}{6} = \frac{1}{3}$ \$\pm\$t\tau_t\tau_R PC:AC=4:6 CR:AR=2:6

$$\Delta APQ = \Delta APR + \Delta QAR$$

= $\Delta ACP - \Delta PCR + \Delta QAR$ である。

$$\triangle$$
 P C R の高さ h = $\sqrt{4^2 - 1^2} = \sqrt{16 - 1} = \sqrt{15}$

$$\Delta PCR = \frac{1}{2} \times 2 \times h = \frac{1}{2} \times 2 \times \sqrt{15} = \sqrt{15}$$

$$\frac{\Delta PCR}{\Delta ACP} = \left(\frac{PC}{AP}\right)^2 = \left(\frac{4}{8}\right)^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$$

$$\Delta ACP = 4 \times \Delta PCR = 4 \times \sqrt{15} = 4\sqrt{15}$$

$$\frac{\Delta PCR}{\Delta QAR} = \left(\frac{CR}{AR}\right)^2 = \left(\frac{2}{6}\right)^2 = \left(\frac{1}{3}\right)^2 = \frac{1}{9}$$

$$\Delta QAR = 9 \times \Delta PCR = 9 \times \sqrt{15} = 9\sqrt{15}$$

$$\Delta APQ = \Delta ACP - \Delta PCR + \Delta QAR$$
$$= 4\sqrt{15} - \sqrt{15} + 9\sqrt{15} = 12\sqrt{15}$$

答 $12\sqrt{15}\,\mathrm{cm}^2$